DER Roadshow

Advanced Reciprocating Engines

Gordon Gerber ARES Program Manager Caterpillar Inc

Gerber_Gordon_R@Cat.com

Caterpillar Power Products

Market Growth Trend

Source: A.D.Little

Engine Power Growth Trend 1MW-30MW

Survey Year (June-May)

Engine Applications Worldwide

2001-2002 6,736 Units

GenSet Applications Worldwide

Source: Caterpillar Electric Power, 2001

Engine Applications by Service

No. of Engines, 1MW - 30MW

Diesel & Gas Turbine Worldwide, Oct 2002

Engine Applications by Fuel

No. of Engines, 1MW - 30MW

Advanced Diesel

Technology	Diesel	Gas	Simnle	Mic ro-	Fuel Cell	Photo-
Comparison	Recip	Recip			400	ltaics
Size Range (eKW)	20 – 10,000	50 – 5000		4	7	468
Efficiency HHV	36- 43 %	28-46 %				a.
*Genset Pkg Cost	125 – 300	250-600		FA		a.
*Turnkey w/o Heat Rec	350-500	600-1000				00 -
*Heat Recovery	n.a.	75 – 150				a.
*O & M Costs	.00501	.007015	A DE		Int-)1004

^{*} Cost in \$/eKW

Source -- GTI Distributed Generation Forum 2000

Mobile Diesel Progress

Stationary Diesel Emissions

Year

Advanced Diesel Technologies

Emissions Requirement	Feasible Diesel Technologies		
EPA Non-Road Tier I NOx = 6.9 g/bhp-hr	All Electronic Engines and Many Mechanical Engines with Jacket Water Aftercooling		
EPA Non-Road Tier II NOx+NMHC = 4.8 g/bhp-hr	Electronics with Air-to-Air or Liquid Aftercooling		
EPA Non-Road Tier III NOx+NMHC = 3.0 g/bhp-hr	Electronics with Cooled EGR & Air-to-Air Aftercooling, or ACERT Combustion Technology, or Electronics with Precise Injection Control, SCR Aftertreatment & Air to Air Aftercooling		
EPA Non-Road Tier IV (Assumed) NOx = 1.0 g/bhp-hr	Cooled EGR & Flexible Fuel Injection & Combustion Development, or ACERT + Improved Air Systems, or Additional SCR Aftertreatment		
EPA Non-Road Tier V (Assumed) NOx = 0.5 g/bhp-hr	Best Combustion & Closed Loop SCR		

Advanced Diesel Concepts

	Technical Path	Fuel Rate	Complexity	Cost / kw
E	Electronic Injection			
	Separate Circuit Aftercooling			
	Exhaust Gas Recirculation			
-	Ultra-Precise Injection Control			
	Aftertreatment (SCR or Particulate Traps)			(B)

Advanced Diesel Results

ACERT[™]: Advanced Combustion Emissions Reduction Technology

- ➤ 50% NOx Reduction 1998 2002
- ➤ Building Block for Near Zero Emissions
- ➤ Combination of
 Tailored Combustion
 Improved Controls
 Precise Injection
 Dedicated DOC (Direct Oxycat)
- ➤ EPA Compliant Throughout 2003
- ➤ Technology transfer into stationary electric power, construction equipment, marine, and locomotive.

Advanced Natural Gas

Technology Comparison	Diesel Recip	Gas Recip	Simple Cycl Gas Turbine	Mic ro- turbine	Fuel Cell	Photo- Voltaics
Size Range (eKW)	20 – 10,000	50 – 5000			oture	uaN
Efficiency HHV	36- 43 %	28-46 %	Gas '	Infrastru	Ciaro	;ostlkw
*Genset Pkg Cost	125 – 300	250-600	3		Emissi	ons
*Turnkey w/o Heat Rec	350-500	600- 1000	6	duct		.0
*Heat Recovery	n. a .	75 – 150	D Pro	ilability	Comple	xity
*O & M Costs	.00501	.007015			<u> </u>	1

^{*} Cost in \$/eKW

Natural Gas Applications

Many Applications Today

Waukesha at NW Community Hospital (IL): 3MW: CHP & Peak Shaving

Caterpillar at Temple University (PA): 16 MW: Peak Shaving

Waukesha at Tampa Electric (FL): 7 MW: CHP & Peak Shaving

Cummins St. Catherine's General Hospital (Ontario): 2.5 MW CHP

Caterpillar at Navistar (MI): 9 MW: CHP

Diesel – Natural Gas Comparison

Diesel – Gas <u>Installation</u> Comparison 400 ekw

Diesel Fuel Storage Smaller Radiator /kw Smaller Volume /kw Lighter /kw Lower Cost /kw

Gas Piping / Pressure Larger Radiator /kw Larger Volume /kw Heavier /kw More Expensive /kw

Diesel – Natural Gas Comparison

Diesel – Gas <u>Operational</u> Comparison 400 ekw

<10 sec Full Load Time Good Block Load Response Fast Transient Response Higher Noise to Reduce Higher NOx emissions Higher Fuel Costs Lower Maintenance Costs

10 - 30 sec Full Load Time Adequate Block Load Variable Transient Response Lower Noise to Reduce Lower NOx emissions Lower Fuel Costs Higher Maintenance Costs

Fuel Type by Application

Diesel – Gas Life Cycle Cost Comparison

ARES Program

A multiyear cooperative agreement between the US Dept of Energy and Industry to create a 50% efficient natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2010

- Multiple Phases
- Ongoing Market Verification
- Partnerships with Labs / Universities
- Pre-Commercialization Demos
- Full Commercialized Production
- Awards Announced Nov 2000
- Contracts Signed April 2001
- ▶ Phase 1 Complete 2004-2005
- ▶ Phase 2 Complete 2007-2008
- Final Phase Complete 2009-2010

2001

2007

2008

2009

2010

2006

2005

ARES Program

Typical Introduction by Phases: Staged Introductions Faster Time to Market Current 38-40% BTE, 2 g NOx Quicker Program Results

Phase I 44% BTE, 0.50g NOx
Phase II 47% BTE, 0.1g NOx
Phase III 50% BTE, 0.1g NOx

ARES Program Results

- ✓ Market Study Done
 - TechnologyOverview
 - ARES Growth Potential

www.eere.energy.gov/der/pdfs/recip_engines_conf_02/bluestein.pdf

First early ARES Product
Caterpillar G3520C
10% better fuel economy
40% better power density
10% lower maintenance cost / kw
No loss of emissions or first cost
Available February 2003

Advanced Natural Gas

Long Term ARES Combustion System - HCCI

Homogeneous Charged Compression Ignition

Exhaust

Normal SI Combustion

50% + Efficiency << 0.1 g/bhp-hr NOx **Equivalent Power Density**

Fuel and Air

Begin to Ignite

Fuel and Air

HCCI Combustion

Combustion

Advanced Reciprocating Engines

- ✓ Diesel Engines offer dramatic emissions improvements Mobile and stationary applications Predictable life cycle costs
- ✓ Natural Gas Engines offer improved systems performance Increasing power density and lower emissions DOE - ARES program execution
- ✓ Engines will continue to contribute to growing US power needs

THANK YOU! QUESTIONS?

